
J. Fluid Mech. (2000), vol. 405, pp. 305–323. Printed in the United Kingdom

c© 2000 Cambridge University Press

305

Transitions of flow past a row of square bars

By J. M I Z U S H I M A AND Y. K A W A G U C H I
Department of Mechanical Engineering, Doshisha University, Kyotanabe,

Kyoto 610-0321, Japan
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Transitions of flow past a row of square bars placed across a uniform flow are
investigated by numerical simulations and the bifurcation analysis of the numerical
results. The flow is assumed two-dimensional and incompressible. It is already known
that jets coming through gaps between square bars are independent of each other
when the pitch-to-side-length ratio of the row is large, whereas the confluence of two
or three jets occurs due to a first pitchfork bifurcation from the flow with independent
jets when the pitch-to-side-length ratio is small. It is found that confluence of four jets
occurs in consequence of the second pitchfork bifurcation from the flow with pairs
of jets joined to each other. Bifurcation diagrams of the flow are obtained, which
include confluences of double, triple and quadruple jets. Lengths of the twin vortices
are evaluated for each flow pattern. The confluences of two, three and four jets are
qualitatively confirmed experimentally by flow visualizations.

1. Introduction
Wakes behind a row of bars have been studied extensively by many experimentalists

who work with wind tunnels, where they use a narrow spaced row of bars to
obtain a uniform velocity distribution without large-scale fluid motions. However, the
narrow spaced row of bars often induces large-scale vortices and prevents the velocity
distribution from becoming uniform when the bars are put too close to each other.
This is due to the confluences of several jets coming through the gaps between bars.

Bohl (1940) did experiments on several rows of parallel polygonal bars and observed
the combining of jets when the pitch-to-diameter ratio σ is smaller than about 2.2,
where σ is the ratio of the spacing P to the diameter d of the bars. Experimental
results by Bradshaw (1965) suggest that the critical value of σ is about 2.3, above
which the combining of jets does not occur in the range of Reynolds number typical
of wind tunnel practice. The Reynolds number dependence of the phenomena was
investigated by Matsui (1975). He did detailed experiments on a row of circular bars
and observed parallel jets at σ = 3.0, and combining of two, three and four jets at
σ = 2.2, 1.8 and 1.6 respectively at Re = 2000, where the Reynolds number is defined
as Re = Ud/ν, U being the upstream velocity, d the diameter of the circular bars
and ν the kinematic viscosity of the fluid. Moretti & Chen (1987) re-examined the
instability of the flow by experiments and concluded that a more complex instability
occurs for σ 6 1.5. A brief review of experiments on the flow past a row of bars is
given by Moretti (1993).

Most experiments so far have been performed at Re ∼ 103, where the wakes are
more or less turbulent. However, it was also found that mutual interactions of jets
lead to a time-periodic flow where detached vortices from bars make a periodic
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pattern with double the period of the bars in the normal direction to the flow at
smaller Reynolds numbers (Re ∼ 210) (see Kobayashi 1984). At still smaller Reynolds
numbers (Re ∼ 20–50), the phenomenon of the confluence of two, three or four jets
was found in steady wakes (Mizushima & Takemoto 1996).

The confluence phenomenon has been attributed to the ‘Coanda effect’ by many
researchers as described in the review by Moretti (1993). The Coanda effect is
assigned when a jet-like stream tends to attach to a rigid boundary or to bend along
a boundary surface, but it does not explain any breaking of the symmetry or any
change of periodicity in the flow field past a row of bars. It had been expected
that bifurcation or stability theory may give physical insight into the underlying
mechanism of the phenomena.

Theoretical attempts to clarify the mechanism of the confluence of jets were made
by Gotoh, Yamada, & Mizushima (1983), Green (1974) and Beaumont (1981). They
assumed a parallel flow that is periodic in the direction normal to the stream as
the basic flow and did a linear stability analysis. However, the critical mode of
disturbance was found to have the same period as the basic flow and the mechanism
of the confluence of jets could not be successfully explained in spite of an extension
to a weakly nonlinear stability analysis (Yamada 1986).

A comprehensive explanation of the confluence of two or three jets in steady wakes
was given by Mizushima & Takemoto (1996) (hereafter referred to as MT). They
did numerical simulations and analysed the numerical results by using bifurcation
theory. It was shown that the confluence of two or three jets occurs due to a
pitchfork bifurcation from the flow with parallel jets. In other words, the flow with
parallel jets becomes unstable at a critical Reynolds number when the Reynolds
number is increased, and another flow with two or three jets combined appears as
a consequence of the instability above the critical Reynolds number. They evaluated
the critical Reynolds numbers Rec2 and Rec3 where the confluence of two or three
jets occurs in the range σ = 1.6–2.5. Their theoretical results were confirmed by their
own experiments, but there was a discrepancy between the values of Rec3 obtained by
numerical simulations and experiments. They conjectured that the discrepancy may
be due to hysteresis phenomena caused by instabilities of the nonlinear solutions of
the flows with two or three jets combining.

The present paper is an extension of MT. We investigate the transitions of flow
past a row of square bars placed across a uniform flow by numerical simulations and
the bifurcation analysis of the numerical data. The flow is assumed two-dimensional
and incompressible. We focus our attention to the mechanism of the confluence of
four jets. We also evaluate the lengths of the twin vortices for each flow where jets
are parallel, or two, three, four jets combined and obtain the pressure distribution for
each flow, which was absent in MT. The confluence phenomenon of jets is confirmed
experimentally by flow visualizations.

2. Method of numerical simulation
We assume a two-dimensional and incompressible flow field; then the governing

equations, the equation of continuity and the Navier–Stokes equation are written in
dimensionless forms as

∇ · u = 0, (2.1)

∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∇2u, (2.2)
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Figure 1. Coordinates and computational domains. ABDC: Domain I, ABFE: Domain II,
ABHG: Domain III, ABJI: Domain IV.

where the Reynolds number Re is defined as Re ≡ Ud/ν, U being the uniform
upstream velocity, d the side length of the square bars and ν the kinematic viscosity,
and all the variables are normalized by using the representative velocity U and length
d. We use the primitive variables u = (u, v) and p for numerical simulations. In
conventional numerical simulations, initial value problems are solved under a certain
boundary condition for a given set of values of parameters (σ, Re), where only stable
solutions are obtained as steady solutions. Our strategy here is to attempt to calculate
all the steady solutions regardless of their stability by imposing appropriate boundary
and symmetry conditions on each steady solution, although it is not always possible
to obtain all the steady solutions as described later. We focus our attention on the
change in the number of steady solutions and evaluate the critical values of the
parameters at which the number of solutions changes. We do not study the linear
stability of the steady solutions here, but some partial knowledge about the stability
can be obtained from the numerical results calculated under various boundary and
symmetry conditions.

2.1. Computational domain and the boundary conditions

We restrict ourselves to flows with each jet independent and two, three, or four jets
combining, and call them σ-flow, 2σ-flow, 3σ-flow and 4σ-flow respectively. In order to
calculate all the steady solutions, we impose corresponding boundary and symmetry
conditions on each solution. We define four computational, domains I, II, III, IV,
which have widths σ, 2σ, 3σ, 4σ in the direction normal to the stream as shown in
figure 1. Flows are assumed periodic in that direction in each domain. We impose a
symmetry condition on each flow field along the centreline of each domain, so that
actual computational regions are reduced to a half of each domain. Note that these
restrictions may exclude other solutions without periodic and symmetry conditions,
but do not set arbitrary limits on the range of symmetric and asymmetric solutions.

We take the Cartesian coordinates as shown in figure 1, where the origin is taken
at the centre of one of the bars, the x-axis parallel to the upstream uniform flow and
the y-axis perpendicular to it. The x- and y-coordinates are normalized by the side
length d of the square bar in this figure. The length of the domain in the streamwise
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direction is L1 + L2, where L1 is the upstream length and L2 the downstream length
from the origin. The lengths L1 and L2 are taken large enough not to affect the
numerical results. We adopt L1 = 4.5 and L2 = 10.5 in all our numerical simulations
except for domain IV where larger length L2 = 11.5 is adopted.

The numerical solution for the steady flow with four jets combining, i.e. 4σ-flow,
can be calculated in the domain ABJI, i.e. domain IV, in figure 1. We will explain
the boundary and symmetry conditions by adopting domain IV as an example. Flow
fields are assumed periodic with the period 4σ in the y-direction and symmetric
along the line AB and EF in domain IV, so that the computational domain can be
reduced to a half of ABJI, i.e. ABFE. Assuming a uniform flow on AE, the boundary
conditions of the velocity and the pressure are written as

u = 1, v = 0,
∂p

∂x
= 0 at x = −L1. (2.3)

For an outflow boundary condition on BF, we use boundary conditions that the
streamwise derivatives of the velocity and the pressure are zero, i.e.

∂u

∂x
= 0,

∂v

∂x
= 0, p = 0 at x = L2. (2.4)

We utilize the symmetric conditions v(x, 0) = 0, ∂u(x, 0)/∂y = 0 and ∂p(x, 0)/∂y = 0
on EF and AB, which are expressed as

u(x, y) = u(x,−y), v(x, y) = −v(x,−y), p(x, y) = p(x,−y) on AB, (2.5)

u(x, 2σ − y) = u(x, y − 2σ), v(x, 2σ − y) = −v(x, y − 2σ),
p(x, 2σ − y) = p(x, y − 2σ) on EF.

}
(2.6)

On the surfaces of the square bars, non-slip boundary conditions are applied as
follows:

u = 0, v = 0. (2.7)

Under the boundary and symmetry conditions (2.3)–(2.7) in domain IV, steady
solutions attainable by our numerical simulations are σ-flow, 2σ-flow and 4σ-flow.
Only 3σ- and σ-flows can be obtained in domain III, whereas σ- and 2σ-flows are
possible in domain II; only σ-flow is attainable in domain I.

2.2. Finite difference approximation

We use the MAC method with a staggered mesh. The MAC method is very popular
and it is briefly summarized here. The basic equations are the equation of continuity
(2.1), and the Navier–Stokes equation (2.2), which are written in terms of primitive
variables. Following the MAC method, the Poisson equation for the pressure p is
derived by taking divergence of (2.2) as

∇2p = −∇ · {(u · ∇)u}+
1

Re
∇2D − ∂D

∂t
, (2.8)

where D ≡ ∇ · u. Although the second and the third terms are identically zero due
to the continuity (2.1), they are retained as correction terms in order to prevent the
accumulation of numerical errors. If u is given at a certain time, p can be calculated
from the Poisson equation (2.8). Then by substituting these values into (2.2), the
velocity u at the next time is calculated from (2.2).

The computational domain is discretized by equally distributed increments ∆x, ∆y
in the x- and y-directions. The mesh points are indicated by indices i and j which
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∆x ∆y v1

Present study (equal mesh) 0.1 0.025 0.208
0.05 0.025 0.197
0.025 0.025 0.196

MT (unequal mesh) 0.1 0.02 ∼ 0.1 0.207

Table 1. Values of v1 ≡ v(1.5, σ/2) for three different sets of mesh sizes, and comparison of our
results with those by MT. Re = 40, σ = 2.0.

count along the x- and y-directions respectively. The time t is also discretized by
∆t and is indicated by an index n. Then the velocity u = (u, v) and the pressure p
are expressed as u(x, y, t) = u(i∆x, j∆y, n∆t) = unij , v(x, y, t) = v(i∆x, j∆y, n∆t) = vnij
and p(x, y, t) = p(i∆x, j∆y, n∆t) = pnij . The magnitudes of ∆x, ∆y and ∆t are taken as
∆x = 0.05, ∆y = 0.025 and ∆t = 0.003 in our numerical simulations. The number of
mesh points is 300× 80 for the case of the σ = 2.0 in domain II, for instance.

In (2.2), the time and the pressure derivatives are approximated by the first-
order forward difference, and other terms in (2.2) and all the terms in (2.8) are
approximated by the second-order central difference. Equation (2.8) for pnij is solved
by the SOR iterative method. The convergence of the iteration is judged by the
criterion maxij |(pnij)k−(pnij)

k−1| < 10−7, where k denotes the number of iteration cycles.

The flow field is judged to attain its steady state if maxij |un+1
ij − unij | < 5.0× 10−7.

2.3. The accuracy of numerical simulations

The accuracy of numerical simulations is confirmed by comparing our results with
those by MT. We adopt the velocity v1 in the y-direction at (x, y) = (1.5, σ/2) for
the case of 2σ-flow as a representative quantity. The lengths L1 = 4.5 and L2 = 10.5
are taken as the same values as MT, who solved the same problem numerically by
using the MAC method with a non-staggered and non-equally distributed mesh, and
also by ψ–ω method. It is noted that the boundary conditions for the pressure p
are different between our numerical method and theirs. We take boundary conditions
(2.3) and (2.4) although they fixed p = 0 at x = −L1 and ∂p/∂x = 0 at x = L2. Our
boundary conditions (2.3) and (2.4) are considered better for numerical stability for
MAC method with a staggered mesh.

We tabulate the values of v1 obtained by our numerical simulation with ∆x = 0.1
and ∆y = 0.025 in table 1, where the results of MT are also listed for comparison. The
difference between our results and those by MT is 0.5% at most. We also compare
the values of v1 for two different sets of mesh sizes (∆x,∆y) = (0.05, 0.025) and (0.025,
0.025). The relative error of v1 between the two cases is 0.5% at most. So, we decided
that the discretization sizes (∆x,∆y) = (0.05, 0.025) are small enough, and we use that
throughout this paper.

3. Numerical results
The confluence of two or three jets in the flow past a row of square bars was found

by numerical simulations of MT and confirmed experimentally by them, where the
mechanism of the confluence was clarified as being due to pitchfork bifurcations. They
evaluated the critical Reynolds numbers Rec2 and Rec3 at which σ-flow bifurcates to
2σ-flow or 3σ-flow in the range of 1.6 6 σ 6 2.5. We reconfirm their results and
evaluate the values of Rec2 and Rec3 in the range of 1.4 6 σ 6 1.7, then clarify the
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(a)

(b)

Figure 2. Flow fields. Re = 24.0, σ = 1.7. (a) Velocity field (velocity vectors). Stable σ-flow.
Domains I, II, III, IV. (b) Pressure (isobars). Stable σ-flow. Domains I, II, III, IV.

mechanism of the confluence of four jets and evaluate the critical Reynolds number
Rec4 at which 4σ-flow appears.

3.1. Flow fields and bifurcations

We have done numerical simulations in all the four domains I–IV for various values
of the Reynolds number, where several initial conditions are adopted. One typical
initial condition is a uniform flow except for the boundary of the bars and another
is the steady flow obtained for a nearby Reynolds number. We will show four flow
fields at Re = 24, 26, 27.5 and 30 for the case of σ = 1.7 as typical flow patterns and
discuss the transition of the flow.

We can obtain only one steady flow solution in all the four domains I–IV for
small values of the Reynolds number even if we repeat the numerical simulations by
adopting various different initial conditions. The steady flow pattern at Re = 24 is
depicted in figure 2(a), where velocity vectors at mesh points used in the numerical
simulations are shown by arrows in domain II. In figure 2(a), we can see that jets
coming through gaps between square bars are independent of each other and the
flow field has a periodicity of σ in the y-direction. The corresponding pressure field
is shown in figure 2(b), where the pressure distribution is drawn by contour lines. We
can see a high pressure gradient at the entrance to the narrow gaps between the bars.
The pressure approaches a constant value p = 0 far downstream.

We can obtain 2σ-flow at Re = 26 in domains II and IV as shown in figure 3(a).
The confluence of two jets is seen from the pressure field in figure 3(b) as well as
the velocity field in figure 3(a). The twin vortices attached to the bars have two
different lengths that alternate as shown in figure 3(a): the twin vortices attached to
the bars at the top and bottom are larger than those attached to the middle bar. We
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Figure 3. Flow fields. Re = 26.0, σ = 1.7. (a) Velocity field (velocity vectors). Stable 2σ-flow.
Domains II, IV. (b) Pressure (isobars). Stable 2σ-flow. Domains II, IV. (c) Velocity field (velocity
vectors). Unstable σ-flow. Domains I, II. (d) Difference between 2σ-flow and σ-flow. Velocity field
(velocity vectors). Domain II.
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Figure 4. Representative velocity v1, the velocity in the y-direction at (x, y) = (1.5, σ/2), in the
steady state: 2σ-flow, σ = 1.7. P2: Pitchfork bifurcation point from σ-flow to 2σ-flow.

can easily imagine by a consideration of the symmetry that there is another solution
obtained by shifting the flow field in figure 3(a) by σ in the y-direction, where the twin
vortices attached to the bars at the top and bottom are smaller than those attached
to the middle bar. There is one more steady solution, depicted in figure 3(c), which
is unstable and calculated in domains I and III. Thus, we have found three steady
solutions, i.e. two 2σ-flows and σ-flow, at Re = 26.

We can expect that some bifurcation of the steady solution happens between
Re = 24 and 26, which was clarified as a symmetry-breaking pitchfork bifurcation
by MT. In order to confirm the bifurcation, we take the velocities v1, v2, v3, v4 in the
y-direction at (x, y) = (1.5, σ/2), (1.5, 3σ/2), (1.5, 5σ/2), (1.5, 7σ/2) as representative
quantities which manifest the magnitude of asymmetry of the flow field (figure 1).
There are relations v1 = −v2 = v3 = −v4 for 2σ-flow, whereas v1 = v2 = v3 = v4 ≡ 0 for
σ-flow. The value of v1 is plotted against Re in figure 4. We can confirm the relation
v1 ∝ (Re−Rec2)

1/2, where Rec2 is the critical Reynolds number at which two 2σ-flows
appear. The value of Rec2 is evaluated as Rec2 = 25.08 by applying the least-square
method to the numerical data. Thus, we can reconfirm that the confluence of two jets
occurs due to the pitchfork bifurcation, since the relation v1 ∝ (Re − Rec2)

1/2 holds.
In other words, only σ-flow exists for Re < Rec2, and two other solutions, 2σ-flows,
appear at Re = Rec2. The 2σ-flows are stable to disturbances with the period σ and
σ-flow is unstable to disturbance with the period 2σ for Re > Rec2.

We will call the difference between the stable 2σ-flow and the unstable σ-flow
a disturbance. The velocity field of the disturbance is obtained by subtracting the
velocity of σ-flow from that of 2σ-flow at each mesh point, which is shown in figure
3(d). Needless to say the disturbance has a periodicity of 2σ in the y-direction and a
symmetry along the line y = σ. The disturbance is seen to consist of two large vortices
whose centres are located on centrelines of the gaps between bars and about 2 times
the side length downstream from the row of bars. It is also noted that the velocity
of the disturbance is directed downstream behind the middle bar, and upstream
behind the top and bottom bars in figure 3(d).

We will try to explain the physical process of the confluence of two jets. The
pressure just behind the array of bars is low at the centres of jets and wakes in σ-flow
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Figure 5. Flow fields. Re = 27.5, σ = 1.7. (a) Velocity field (velocity vectors). Stable 3σ-flow.
Domain III. (b) Pressure (isobars). Stable 3σ-flow. Domain III. (c) Velocity field. Unstable σ-flow.
Domain I. (d) Difference between 3σ-flow and σ-flow. Velocity field (velocity vectors). Domain III.
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Figure 6. Representative velocity v1, the velocity in the y-direction at (x, y) = (1.5, σ/2), in the
steady state. 3σ-flow. σ = 1.7.

as seen in figure 2(b) and the jets pull on each other. A jet is pulled from both sides
and the tug is balanced when the Reynolds number is small. The jet bends to neither
side due to a resistive force by the viscosity even if there is a small imbalance in the
tug, but the balance is broken by a small disturbance at Re = Rec2. The pressure just
behind the array of bars is low only at the centres of every other wake in 2σ-flow as
seen from figure 3(b). Thus the phenomenon is similar to the buckling of an elastic
body.

We can obtain σ-flow in domain I and two 2σ-flows in domain II and IV at
Re = 27.5 similarly to the case of Re = 26. However, the flow pattern changes in
domain III when the Reynolds number is raised from Re = 26 to 27.5. The 3σ-flow
appears in domain III at Re = 27.5, which is depicted in figure 5(a). The twin vortices
attached to the bars are seen to change their sizes in sets of three in figure 5(a). Three
jets coming through gaps between bars join into one behind the row of bars, the
middle jet going straight. The corresponding pressure field is shown in figure 5(b). It
is seen that contour lines of pressure which stem from the surfaces of the top and
bottom bars are connected with each other in figure 5(b).

We explore the bifurcation point of 3σ-flow by taking the velocity v1 in a similar
manner to the case of 2σ-flow. It is noted here that v1 = −v3 = v4 for 3σ-flow, while
v2 ≡ 0. So the velocity v1 manifests the magnitude of the asymmetry of the flow field
along the line y = σ/2. The value of v1 is plotted against Re in figure 6. We can
confirm the relation v1 ∝ (Re−Rec3)

1/2, where Rec3 is the critical Reynolds number at
which two 3σ-flows appear. The value of Rec3 is evaluated as Rec3 = 26.82. Thus, we
can reconfirm that the confluence of three jets occurs due to the pitchfork bifurcation
from the σ-flow. We have seen that there are σ-flow, two 2σ-flows and two 3σ-flows
for Re > Rec3. The σ-flow is unstable to disturbances with the period 2σ or 3σ for
Re > Rec3, while the stabilities of 2σ- and 3σ-flows are not studied here.

The flow field of the unstable σ-flow at Re = 27.5 is shown in figure 5(c), where all
the twin vortices attached to bars have an equal length. The disturbance defined by
the difference between the stable 3σ-flow and the unstable σ-flow is depicted in figure
5(d). The flow pattern of the disturbance for 3σ-flow resembles to the one for 2σ-flow
as shown in figures 5(d) and 3(d). In figure 5(d), we can see two larger vortices, whose
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Re v1 v2 (v1 + v2)2

30.0 0.088 −0.443 0.126
29.0 0.106 −0.409 0.091
28.5 0.125 −0.379 0.064
28.0 0.168 −0.320 0.023
27.7 0.233 −0.236 0.000

Table 2. Velocities v1 and v2 as the representative magnitude of the asymmetry
of the bifurcated solution. σ = 1.7.

centres are located on centrelines of the gaps between bars and about 2 times the side
length downstream from the row of bars. The velocity of the disturbance is directed
downstream behind the two middle bars, and upstream behind the top and bottom
bars.

The 4σ-flow is obtained as a steady solution in domain IV at Re = 30 as shown
in figure 7(a). We can see four jets combining in this figure. The lengths of the twin
vortices attached to bars vary in sets of four in the manner long, short, medium, short
twin vortices and so on. The corresponding pressure field is depicted in figure 7(b).
The contour lines of pressure which stem from the surfaces of the top and bottom
bars are connected with each other, which reflects the mutual interaction between the
four jets.

We have tried to find some relations of v1, v2, v3 or v4 to Re in order to explore
the bifurcation point of 4σ-flow, but could not find any definite relations. Symmetry
considerations lead to v1 = −v4 and v2 = −v3 for 4σ-flow, whereas v1 = −v2 = v3 =
−v4 hold for 2σ-flow. So, the sum v1 + v2 manifests the magnitude of the difference
between 4σ- and 2σ-flows, which is plotted against Re in figure 8 and tabulated in
table 2. The relation (v1 + v2) ∝ (Re−Rec4)

1/2 holds near the critical point where Rec4

is the critical Reynolds number at which the 4σ-flow bifurcates from 2σ-flow. Thus
we can conclude that the confluence of four jets is also due to pitchfork bifurcation.
However, this bifurcation occurs from 2σ-flow at the critical Reynolds number Rec4,
which is evaluated as Rec4 = 27.71.

We can calculate an unstable solution of 2σ-flow for Re = 30 in domain II, which
is shown in figure 7(c). The disturbance, which is defined as the difference between
4σ-flow and 2σ-flow, is depicted in figure 7(d). Four large vortices are observed in the
figure, where each pair of adjacent vortices have the same sense of circulation.

We summarize the flow patterns obtained as steady solutions in domains I–IV for
σ = 1.7 in figure 9. The global bifurcation diagram is easily imagined from this figure,
but will be discussed in detail in § 3.3.

3.2. Lengths of the twin vortices attached to the bars

We can observe the bifurcations of steady solutions also from the change of lengths
of the twin vortices attached to the bars in place of v1 or v1 + v2. The lengths of the
twin vortices l are plotted against Re in figures 10(a) and 10(b) for σ = 1.7 and are
tabulated in table 3. In figure 10(a), we can see the dependence of l on the Reynolds
number Re for σ-, 2σ- and 4σ-flows. The length l1 of the twin vortices for σ-flow
is shown by the line l1 in figure 10(a). All the lengths are equal to each other for
Re < Rec2 = 25.08 as seen in figure 10(a). The magnitude of l1 increases almost
linearly with the increase of Re.

At Re = Rec2, the line l1 splits into three, which are indicated as l2L, l1 and l2S
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Figure 7. Flow fields. Re = 30.0, σ = 1.7. (a) Velocity field (velocity vectors). Stable 4σ-flow.
Domain IV. (b) Pressure (isobars). Stable 4σ-flow. Domain IV. (c) Velocity field (velocity vectors).
Unstable 2σ-flow. Domain II. (d) Difference between 4σ-flow and 2σ-flow. Velocity field (velocity
vectors). Domain IV.
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Figure 8. Representative velocity v1 + v2. 4σ-flow. P4: Pitchfork bifurcation point from 2σ-flow to
4σ-flow. σ = 1.7.
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Figure 9. Summary of flow patterns obtained numerically in each computational domain. For
instance, 4σ-flow is obtained as a steady-state solution by numerical calculations in numerical
domain IV at Re = 30.

respectively. This splitting means that every other vortex become larger and the
others smaller alternately as the Reynolds number becomes larger than Rec2. So, the
appearance of 2σ-flow corresponds to the alternate stretching and shrinking of twin
vortices.

At Re = Rec4, the line l2L splits into three lines, which are indicated as l4L, l2L and
l4M respectively. In other words, half the larger vortices become still larger and the
other half become smaller as the Reynolds number is raised above Rec4, while smaller
vortices with the length l2S do not change their scale significantly.

In figure 10(b), the line l1 for σ-flow splits into three lines, which are indicated as
l3L, l1 and l3S respectively. This splitting means that one in three of the twin vortices
becomes larger, another becomes smaller and the third remains unchanged as the
Reynolds number becomes larger than Rec3. In this case, one of the twin vortices in
every three stretches as seen in figure 5(a).
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Figure 10. Lengths of the twin vortices l. σ = 1.7. (a) Domains I, II, IV. Filled triangles: l1, filled
circles: l2L, open circles: l2S , open triangles: l4L, half-filled circles: l4M . P2: Pitchfork bifurcation
point from σ-flow to 2σ-flow. P4: Pitchfork bifurcation point from 2σ-flow to 4σ-flow. (b) Domains
I, IV. Filled triangles: l1, filled circles: l3L, open circles: l3S . P3: Pitchfork bifurcation point from
σ-flow to 3σ-flow.

3.3. Bifurcation diagram

The bifurcation diagram of the steady solutions is shown for σ = 1.7 in figure 11,
where the representative velocity v1 is plotted against Re. The horizontal line v1 = 0
shows σ-flow, the other lines, indicate 2σ-, 3σ- and 4σ-flows. For Re < Rec2, v1 is
identically zero, which shows that σ-flow is the only steady solution. At Re = Rec2 a
pitchfork bifurcation occurs and two solutions of 2σ-flow appear, whereas the σ-flow
becomes unstable. The second bifurcation occurs at Rec4 and two branches of steady
solution of 4σ-flow appear from each 2σ-flow. The 3σ-flows appear as a consequence
of another pitchfork bifurcation at Re = Rec3.

We have not studied the stability of the flows, but some information on their
stability is obtained from figure 11. For instance, 2σ-flows are stable to disturbances
with the periods σ and 4σ at Re = 26. The bifurcation diagrams for other values of
σ are similar to figure 11.
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2σ-flow 3σ-flow 4σ-flowσ-flow
Re l1 l2L l2S l3L l3S l4L l4M

24.0 2.03 — — — — — —
25.0 2.13 — — — — — —
25.5 2.17 2.65 2.65 — — — —
26.0 2.22 — — — — — —
26.5 — 2.98 1.74 — — — —
27.0 2.29 — — — — — —
27.5 — 3.24 1.66 3.70 1.95 — —
27.7 2.35 3.46 1.62 — — — —
28.0 2.36 3.80 1.56 — — 4.76 3.08
28.5 2.42 — — 4.88 1.78 5.78 2.92
29.0 2.45 4.12 1.56 5.37 1.74 6.45 2.67
30.0 2.54 4.44 1.56 5.98 1.70 7.49 2.62
32.0 2.72 — — 7.00 1.51 — —

Table 3. Length l of the twin vortices attached to the square bars. σ = 1.7.
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Figure 11. Global bifurcation diagram. σ = 1.7. Filled circles: 2σ-flow, half-filled circles: 3σ-flow,
open circles: 4σ-flow. P2: Pitchfork bifurcation point from σ-flow to 2σ-flow. P3: Pitchfork
bifurcation point from σ-flow to 3σ-flow. P4: Pitchfork bifurcation point from 2σ-flow to 4σ-flow.

3.4. Critical Reynolds numbers

We have done similar numerical simulations for σ = 1.4, 1.5 and 1.6 as well as σ = 1.7
and evaluated the critical Reynolds numbers Rec2, Rec3 and Rec4 for each aspect ratio
σ. The critical Reynolds numbers Rec2, Rec3 and Rec4 are shown in figure 12 and are
tabulated in table 4. In figure 12, only σ-flow is the steady solution in the region
under the line indicated by Rec2. In the region between the two lines indicated by
Rec2 and Rec3, 2σ-flow is also a steady solution as well as unstable σ-flow. The 3σ-
and 2σ-flows are steady solutions as well as unstable σ-flow in the region between
the two lines indicated by Rec3 and Rec4. It cannot be predicted which flow, 2σ or
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Rec2 Rec3

σ Present result MT Present result MT Rec4

1.4 19.27 — 20.94 — 21.47
1.5 20.96 — 22.64 — 23.54
1.6 22.00 23.16 23.90 24.65 25.60
1.7 23.20 25.08 26.40 26.82 27.71

Table 4. Critical Reynolds numbers Rec2, Rec3 and Rec4. Rec2 is the critical Reynolds number for
the bitchfork bifurcation from σ-flow to 2σ-flow, Rec3 from σ-flow to 3σ-flow and Rec4 from 2σ-flow
to 4σ-flow.
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1.4 1.5 1.6 1.7 1.8 1.9
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Rec3(MT)

30

25

20

15
2.0

Rec2(MT)
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Figure 12. Critical Reynolds numbers. Solid line with filled circles: Rec2 (present result), solid line
with half-filled circles: Rec3 (present result), solid line with open circles: Rec4(present result), dotted
line with filled circles: Rec2 (MT), dotted line with half-filled circles: Rec3 (MT).

3σ, may appear in this range because the stability of the flows is not studied in this
paper. The critical values Rec2 and Rec3 obtained by MT are shown for comparison.
Our critical values of Rec2 and Rec3 are 7.5% smaller than those by MT at most. The
difference may come from the insufficient resolution of computational region used by
MT. However, any direct comparisons of mesh sizes are not possible because they
used a non-equally distributed mesh whereas we used an equally distributed mesh.

We have evaluated the critical Reynolds numbers for the appearance of the combi-
nation phenomena of two, three, four jets for a fixed value of σ, but most experiments
so far have been done to seek the critical aspect ratio σc for a fixed value of Re.
Such a critical aspect ratio σc can be found from figure 12. For instance, the critical
aspect ratio σc2 for the occurrence of the combining of two jets at Re1 is given by the
intersection of the line indicated by Rec2 and a line of Re = Re1.

4. Experimental method and results
We did experiments to obtain flow visualizations. The experiments were done in

a suction-type wind tunnel which has a test section 225 × 225 mm2 in cross-section
and 1000 mm in length. The kinematic viscosity ν of air was 0.015 cm2 s−1 at the
temperature in our laboratory. It was confirmed that the tunnel provides an almost
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(a) (b)

(c) (d )

Figure 13. Typical flow patterns visualized by smoke from dry ice. σ = 1.7. Flow direction is from
the top to the bottom. (a) σ-flow. Re = 25. (b) 2σ-flow. Re = 28. (c) 3σ-flow. Re = 34. (d) 4σ-flow.
Re = 40.

uniform flow except for the wall boundary layers. The uniform velocity ranges from
130 mm s−1 to 1100 mm s−1. A row of square bars with the side length d = 4 mm was
set parallel to the side of the test section. The distance P between the centre of adjacent
square bars is fixed as P = 6.8 mm so that the corresponding pitch-to-side-length ratio
σ is 1.7.

For the visualization of the flow, smoke from dry ice was used. A sheet of light
from a slide projector is thrown on the test section at its mid-height to take pictures
of the flow. The uniform velocity U was measured at the centre of the entrance of
the test section by a hot wire, which was adopted as a representative velocity in the
definition of Re ≡ Ud/ν.

It is stressed here that we do not intend to obtain the bifurcation diagram of the
flow nor to determine the critical Reynolds number by the experiments, but we aim
to realize steady confluent flows experimentally and visualize them. So the uniform
velocity, i.e. the Reynolds number, is not increased quasi-statically in our experiments,
but is changed to-and-fro to seek steady confluent flow patterns.

The flow patterns thus obtained are depicted in figures 13(a)–13(d) for Re =
25, 28, 34, 40 respectively. In each figure, the flow direction is from the top to the
bottom, and streak lines are visualized as lighter broad lines that are brightened by
the reflected light from the dry ice smoke. The dark regions roughly correspond to
twin vortices attached to the bars. In figure 13(a) for Re = 25, the lengths of the twin
vortices attached to the square bars are almost the same as each other. The lengths are
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roughly measured from the figure as l1 = 2.3d–2.72d, which should be compared to the
numerical result of l1 = 2.13. The difference between the experimental and numerical
results is rather small. The jets are almost parallel to the uniform flow upstream and
the flow field has a periodicity of σ in the direction normal to the stream. Figure 13(b)
shows the flow field for Re = 28. The lengths of twin vortices vary alternately and
the flow field has a periodicity of 2σ in the direction normal to the stream although
a confluence of four jets is also seen in the left-hand side of this figure. The lengths
are measured from the figure as l2S = 1.6d–2.0d and l2L = 2.6d–2.9d, which should be
compared to the numerical results of l2S = 1.56d and l2L = 3.80. The experimental
and numerical results for l2L differ significantly although the lengths l2S coincide with
each other. It is thought that the difference may come from a slight non-uniformity
of the uniform flow in the wind channel. The visualized streaklines extend straight
downstream in figure 13(b). This suggests that the flow is almost steady. The critical
Reynolds number Rec2 for the appearance of 2σ-flow is expected between Re = 25
and 28. The combining of three jets (3σ-flow) is seen in figure 13(c) for Re = 34
although the periodicity 3σ is not very clear. We can see the flow field with the period
of 4σ in figure 13(d) for Re = 40. It is clearly seen that the combining of four jets
occurs by the coalescences of pairs of two combined jets in the figure.

It is reconfirmed that the confluence of jets occurs and the flow pattern changes
as the Reynolds number is increased for a fixed value of σ, i.e. σ = 1.7. This is
in contrast to almost all experiments (Bohl 1940; Bradshaw 1965; Moretti & Chen
1987; Moretti 1993) which have been done so far, which were in order to explore the
critical pitch-to-side-length ratio σc for a given value of the Reynolds number.

5. Conclusions
It is our conclusion that 4σ-flows appear as a result of the second pitchfork

bifurcation from the bifurcated 2σ-flow, whereas 2σ- and 3σ-flows arise due to the
first pitchfork bifurcation from σ-flow. So, the present result is not only an extension
of the number of jets but also an extension of the stage of transitions compared to
previous work.

We have attempted a physical explanation for the confluence phenomena in § 3.1,
but it may not seem very convincing. It is expected that a more convincing explanation
will be given for the phenomena.

It is found that 4σ-flow appears as a result of instability of 2σ-flow. This reminds
us of period-doubling bifurcations, although the spatial period is considered in the
present case in place of the usual time period. It is our speculation that there may be
a spatial period-doubling bifurcation in the flow past a row of square bars. On the
other hand, it is expected that two other solution branches of 4σ-flow may bifurcate
directly from σ-flow at very high Reynolds number. However, the branches have no
physical significance because the σ-flow is unstable at such high Reynolds numbers
and the 4σ-flows are not easily realized in experiments.

We have not studied the stability of the flows. MT pointed out that there is a
discrepancy between the critical Reynolds numbers Rec3 obtained by experiments
and numerical simulations, although the values of Rec2 evaluated experimentally
and numerically coincide. They conjectured that this discrepancy may come from a
hysteresis phenomenon, which appears when experiments or simulations are done by
increasing or decreasing the Reynolds number. Our experiments were conducted just
to realize the confluent steady flows, so the discrepancy was not resolved. Precise
experiments and stability analyses of the steady solutions are expected to resolve the
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discrepancy between experiments and numerical results and to confirm the hysteresis
conjectured by MT.

As for flows past a single square bar, a Hopf bifurcation occurs as the first
bifurcation. The flow is steady and symmetric for Re < Rec. The symmetric flow
becomes unstable at Rec and time-periodic flows appear due to the instability. The
critical Reynolds number Rec is evaluated as Rec = 48.8 by MT. The critical Reynolds
number for the flow past a circular cylinder was evaluated as Rec = 46.2 by Jackson
(1987). The flow past a circular cylinder was shown to be almost two-dimensional for
Re 6 180.

We have confined ourselves to steady flows in the present paper, so only pitchfork
bifurcations are found. However, if we extend our numerical simulations to unsteady
flows, Hopf bifurcations are expected to lead to the confluence of several jets occurring
in time-periodic flows where vortices detached from bars make a periodic pattern in
the transverse direction to the flow with twice the period of the bars at moderate
Reynolds numbers (Re ∼ 210) (Kobayashi, 1984) and turbulent flows (Re ∼ 3000)
(Matsui, 1975).

The authors express their cordial thanks to Professors T. Matsui, H. Yamaguchi, S.
Narita and Dr T. Adachi for valuable discussion. This work was partially supported
by a Grant-in-Aid from the Ministry of Education, Science and Culture and also by
Doshisha University’s Research Promotion Funds.
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